HS-173, a Novel PI3K Inhibitor, Attenuates the Activation of Hepatic Stellate Cells in Liver Fibrosis
نویسندگان
چکیده
Hepatic stellate cells (HSCs) are the primary source of matrix components in liver disease such as fibrosis. Phosphatidylinositol 3-kinase (PI3K) signaling in HSCs has been shown to induce fibrogenesis. In this study, we evaluated the anti-fibrotic activity of a novel imidazopyridine analogue (HS-173) in human HSCs as well as mouse liver fibrosis. HS-173 strongly suppressed the growth and proliferation of HSCs and induced the arrest at the G2/M phase and apoptosis in HSCs. Furthermore, it reduced the expression of extracellular matrix components such as collagen type I, which was confirmed by an in vivo study. We also observed that HS-173 blocked the PI3K/Akt signaling pathway in vitro and in vivo. Taken together, HS-173 suppressed fibrotic responses such as cell proliferation and collagen synthesis by blocking PI3K/Akt signaling. Therefore, we suggest that this compound may be an effective therapeutic agent for ameliorating liver fibrosis through the inhibition of PI3K signaling.
منابع مشابه
3-Methyladenine ameliorates liver fibrosis through autophagy regulated by the NF-κB signaling pathways on hepatic stellate cell
3-Methyladenine (3-MA) is a selective type III phosphatidylinositol 3-kinase (PI3K) inhibitor and also blocks autophagosome formation. However, the effect of 3-MA in liver fibrosis has yet to be determined. Recent studies have demonstrated that autophagy is closely related to activation of hepatic stellate cells (HSC), a process critical in the pathogenesis of liver fibrosis. And the transcript...
متن کاملNF-κB inhibition alleviates carbon tetrachloride-induced liver fibrosis via suppression of activated hepatic stellate cells
An effective treatment for hepatic fibrosis is not available clinically. Nuclear factor (NF)-κB plays a central role in inflammation and fibrosis. The aim of the present study was to investigate the effect of an NF-κB inhibitor, BAY-11-7082 (BAY), on mouse liver fibrosis. The effects of BAY on hepatic stellate cell (HSC) activation were measured in the lipopolysaccharide-activated rat HSC-T6 ce...
متن کاملmiR-200c Accelerates Hepatic Stellate Cell-Induced Liver Fibrosis via Targeting the FOG2/PI3K Pathway
BACKGROUND Although expression of miR-200s is aberrant in liver fibrosis, its role in liver fibrogenesis still remains unknown. Here, we investigated the role of miR-200c in the activation of human hepatic stellate cells (HSCs) and induction of liver fibrosis. METHODS We engineered human HSCs (LX2 cell line) to stably express miR-200c (LX2-200c) or empty vector control (LX2-nc). RESULTS miR...
متن کاملThymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells.
Thymoquinone (TQ) is the major active compound derived from the medicinal Nigella sativa. In the present study, we investigated the anti-fibrotic mechanism of TQ in lipopolysaccharide (LPS)-activated rat hepatic stellate cells line, T-HSC/Cl-6. T-HSC/Cl-6 cells were treated with TQ (3.125, 6.25 and 12.5μM) prior to LPS (1μg/ml). Our data demonstrated that TQ effectively decreased activated T-HS...
متن کاملCorrection: Brivanib Attenuates Hepatic Fibrosis In Vivo and Stellate Cell Activation In Vitro by Inhibition of FGF, VEGF and PDGF Signaling
BACKGROUND AND AIMS Brivanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR) and fibroblast growth factor receptor (FGFR) tyrosine kinases, which are both involved in mechanisms of liver fibrosis. We hypothesized that inhibition of VEGFR and FGFR by brivanib would inhibit liver fibrosis. We therefore examined the effect of brivanib on liver fibrosis in three mous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013